
Solutions

Profs. Viktor Kun£ak, Martin Odersky, and

Clément Pit-Claudel

CS-214 Software Construction

30.10.2023 from 12:15 to 13:00

Duration: 90 minutes

1
SCIPER : 1000001 ROOM: SG 1

Annie Easley
Wait for the start of the exam before turning to the next page. This document is printed

double sided, 12 pages. Do not unstaple.

Material This is a closed book exam. Paper documents and electronic devices are

not allowed. Place on your desk your student ID and writing utensils.

Place all other personal items at the front of the room. If you need

additional draft paper, raise your hand and we will provide some.

Time All points are not equal: we do not think that all exercises have the

same di�culty, even if they have the same number of points. Manage

your time accordingly. You may want to look at the whole exam before

starting on a particular exercise.

Appendix The last page of this exam contains an appendix which is useful for

formulating your solutions. Do not detach this sheet.

Use a pen For technical reasons, only use black or blue pens for the MCQ

part, no pencils! Use white corrector if necessary.

Grading Scheme The exam contains a total of 50 points. For multiple choice questions,

a good answer is worth 4 points and a bad answer 0 points. Note that

there is always exactly one good answer to each question. For true-false

questions, a good answer is worth 2 points and a bad answer 0 points.

For open questions, the number of points is variable and indicated at the

top of each question.

Stay Functional Do not use vars, while loops, for...do loops, etc. This will result

in 0 points for that question.



Solutions

Span (12 pts)

Question 1 This question is worth 12 points.

0 1 2 3 4 5 6 7 8 9 10 11 12 Do not write here.

Your task is to complete the functions span and spanTailRec. Both functions implement the same

functionality.

Both functions take a list l and a predicate p as parameters and return a pair of lists (l1, l2), where

� l1 is the longest pre�x of l where all elements satisfy p, and

� l2 is the remainder of the list.

In addition, spanTailRec takes a third acc parameter. Its initial value is Nil.

Furthermore, the spanTailRec function must be tail-recursive.

Here are example tests that your implementations must pass successfully:

class SpanTest extends munit.FunSuite:

test("span(List(1, 2, 3, 4), _ < 3)"):

val l = List(1, 2, 3, 4)

val (l1, l2) = span(l, _ < 3)

assertEquals(l1, List(1, 2))

assertEquals(l2, List(3, 4))

test("spanTailRec(List(1, 2, 3, 4), _ < 3)"):

val l = List(1, 2, 3, 4)

val (l1, l2) = spanTailRec(l, _ < 3)

assertEquals(l1, List(1, 2))

assertEquals(l2, List(3, 4))

test("span(List(1, 2, 3), _ % 2 == 1)"):

val l = List(1, 2, 3)

val (l1, l2) = span(l, _ % 2 == 1)

assertEquals(l1, List(1))

assertEquals(l2, List(2, 3))

test("spanTailRec(List(1, 2, 3), _ % 2 == 1)"):

val l = List(1, 2, 3)

val (l1, l2) = spanTailRec(l, _ % 2 == 1)

assertEquals(l1, List(1))

assertEquals(l2, List(2, 3))



Solutions

def span[T](l: List[T], p: T => Boolean): (List[T], List[T]) =

l match
case Nil => (Nil, Nil)

case x :: xs =>
if p(x) then

val (ys, zs) = span(xs, p)

(x :: ys, zs)

else
(Nil, l)

@scala.annotation.tailrec
def spanTailRec[T](

l: List[T],

p: T => Boolean,

acc: List[T] = Nil

): (List[T], List[T]) =

l match
case Nil => (acc.reverse, Nil)

case x :: xs =>
if p(x) then

spanTailRec(xs, p, x :: acc)

else
(acc.reverse, l)



Solutions

Concat (10 pts)

Consider the following de�nition of lists of characters:

enum CharList:

case CharNil

case CharCons(char: Char, tail: CharList)

import CharList.*

A correct implementation must return and pass, among others, the tests de�ned in testConcat:

import CharList.*
val l1 = CharCons(’a’, CharNil)

val l2 = CharCons(’b’, CharCons(’c’, CharNil))

val l12 = CharCons(’a’, CharCons(’b’, CharCons(’c’, CharNil)))

val l21 = CharCons(’b’, CharCons(’c’, CharCons(’a’, CharNil)))

def testConcat(version: Int, concat: (CharList, CharList) => CharList) =

test("concat" + version + "(l1, l2) returns the right result"):

assertEquals(concat(l1, l2), l12)

test("concat" + version + "(l2, l1) returns the right result"):

assertEquals(concat(l2, l1), l21)

Given below are 5 di�erent implementations of the concat function. For each implementation, tick �Yes�

if it is correct (for all possible inputs), or �No� if it is incorrect.

def concat1(l1: CharList, l2: CharList): CharList =

l2 match
case CharNil => l2

case CharCons(char, tail) => CharCons(char, concat1(tail, l1))

Question 2 Is concat1 correct?

Yes No

def concat2(l1: CharList, l2: CharList): CharList =

l1 match
case CharNil => l2

case CharCons(char, tail) => CharCons(char, concat2(tail, l2))

Question 3 Is concat2 correct?

Yes No



Solutions

def concat3(l1: CharList, l2: CharList): CharList =

l2 match
case CharNil => l1

case CharCons(char, tail) => concat3(CharCons(char, l1), tail)

Question 4 Is concat3 correct?

Yes No

def concat4(l1: CharList, l2: CharList): CharList =

l1 match
case CharNil => l2

case CharCons(char, tail) => concat4(CharCons(char, l2), tail)

Question 5 Is concat4 correct?

Yes No

def concat5(l1: CharList, l2: CharList): CharList =

l1 match
case CharNil => l2

case CharCons(char, tail) => concat5(tail, CharCons(char, l2))

Question 6 Is concat5 correct?

Yes No



Solutions

Proof of SumFlatMap (12 pts)

Question 7 This question, consisting of both cases of the proof, is worth 12 points.

0 1 2 3 4 5 6 7 8 9 10 11 12 Do not write here.

All lemmas on this page hold for all types T and S, and all l: List[T], x: T, xs: List[T], y: Int,

ys: List[Int], zs: List[Int], f: T => S, g: T => List[S], and h: T => List[Int].

Given the following lemmas:

(MapNil) Nil.map(f) === Nil

(MapCons) (x::xs).map(f) === f(x) :: xs.map(f)

(FlatMapNil) Nil.flatMap(g) === Nil

(FlatMapCons) (x::xs).flatMap(g) === g(x) ++ xs.flatMap(g)

(SumNil) sum(Nil) === 0

(SumCons) sum(y::ys) === y + sum(ys)

(SumConcat) sum(ys ++ zs) === sum(ys) + sum(zs)

You need to prove:

(SumFlatMap) sum(l.flatMap(h)) === sum(l.map(h).map(sum))

Complete the proof below. For each step, you must write the name of the lemma you are using. You may

only use the lemmas above.

The proof is done by induction on l.

Base case: l is Nil. Therefore, you need to prove:

sum(Nil.flatMap(h)) === sum(Nil.map(h).map(sum))

sum(Nil.flatMap(h))

=== sum(Nil) by FlatMapNil

=== sum(Nil.map(sum)) by MapNil

=== sum(Nil.map(h).map(sum)) by MapNil



Solutions

Induction step: l is x :: xs. Therefore, you need to prove:

sum((x::xs).flatMap(h)) === sum((x::xs).map(h).map(sum))

given that the induction hypothesis, named IH, holds:

(IH) sum(xs.flatMap(h)) === sum(xs.map(h).map(sum))

sum((x::xs).flatMap(h))

=== sum(h(x) ++ xs.flatMap(h)) by FlatMapCons

=== sum(h(x)) + sum(xs.flatMap(h)) by SumConcat

=== sum(h(x)) + sum(xs.map(h).map(sum)) by IH

=== sum(sum(h(x))::xs.map(h).map(sum)) by SumCons

=== sum((h(x)::xs.map(h)).map(sum)) by MapCons

=== sum((x::xs).map(h).map(sum)) by MapCons



Solutions

Mystery function (6 pts)

Question 8 This question is worth 6 points.

0 1 2 3 4 5 6 Do not write here.

In this exercise, your task is to use the substitution method to write the step-by-step evaluation of an

expression, under the call-by-value evaluation strategy.

You must apply the de�nition of a single function call at a time and write the result of each step. You can

directly reduce if-then-else expressions to their branches.

As an example, consider the function factorial:

def factorial(n: Int): Int =

if n == 0 then 1

else n * factorial(n - 1)

The expression factorial(1) evaluates step-by-step as follows:

factorial(1)

=== 1 * factorial(0)

=== 1 * 1

=== 1

Now, consider the function f:

def f(a: Int, b: Int): Int =

if b > a then 0

else f(a - b, b) + 1

Write the step-by-step evaluation of the expression f(5, 2):

f(5, 2)

=== f(3, 2) + 1

=== (f(1, 2) + 1) + 1

=== (0 + 1) + 1

=== 1 + 1

=== 2

What does f do, in one word, assuming the arguments are positive integers?

Division



Solutions

Collect (10 pts)

Question 9 This question is worth 10 points.

0 1 2 3 4 5 6 7 8 9 10 Do not write here.

Your task is to implement the function collect. This function takes a list l: List[T] and a function

f: T => Option[U] as parameters, and returns a list of all the elements y for which there is an element

x in l such that f(x) == Some(y).

Here is one example test that your implementation must pass successfully:

test("""collect(List("abc", "451", "true", "1984"), _.toIntOption)"""):

val l = List("abc", "451", "true", "1984")

assertEquals(collect(l, _.toIntOption), List(451, 1984))

where toIntOption is a method of String that returns Some(x) if the string represents an integer x,

or None otherwise.

Assuming the runtime complexity of f is constant (O(1)), the runtime complexity of your implementation

should not be more than linear (O(n)).

def collect[T, S](l: List[T], f: T => Option[S]): List[S] =

l match
case Nil => Nil

case x :: xs =>
f(x) match

case None => collect(xs, f)

case Some(res) => res :: collect(xs, f)

def collect2[T, S](l: List[T], f: T => Option[S], acc: List[S] = Nil): List[S]

=

l match
case Nil => acc.reverse

case x :: xs =>
f(x) match

case None => collect2(xs, f, acc)

case Some(res) => collect2(xs, f, res :: acc)

def collect3[T, S](l: List[T], f: T => Option[S]): List[S] =

l.flatMap(f)

def collect4[T, S](l: List[T], f: T => Option[S]): List[S] =

l.map(f).flatten



Solutions

Appendix: Scala Standard Library Methods

Here are the prototypes of some Scala classes that you might �nd useful:

// Time complexity is listed for some methods below in big-O notation.

// n refers to the number of elements in the list.

abstract class List[+A]:

// Adds an element at the beginning of this list. O(1)

def ::[B >: A](elem: B): List[B]

// Get the element at the specified index. O(n)

def apply(n: Int): A

// Tests whether this list contains a given value as an element. O(n)

def contains[A1 >: A](elem: A1): Boolean

// Selects all elements except first n ones.

def drop(n: Int): List[A]

// Drops longest prefix of elements that satisfy a predicate.

def dropWhile(p: A => Boolean): List[A]

// Selects all elements of this list which satisfy a predicate.

def filter(pred: A => Boolean): List[A]

// Selects all elements of this list which do not satisfy a predicate.

def filterNot(pred: A => Boolean): List[A]

// Builds a new list by applying a function to all elements of this list and

// using the elements of the resulting collections

def flatMap[B](f: A => List[B]): List[B]

// Applies a binary operator to a start value and all elements of this

// sequence, going left to right.

def foldLeft[B](z: B)(op: (B, A) => B): B

// Applies a binary operator to a start value and all elements of this

// sequence, going right to left.

def foldRight[B](z: B)(op: (A, B) => B): B

// Tests whether a predicate holds for every element of this collection

def forall(p: A => Boolean): Boolean

// Selects the first element of this list. O(1)

def head: A

// Computes the multiset intersection between this sequence and another sequence.

// O(n*m), where m is the number of elements in ‘that‘

def intersect[B >: A](that: Seq[B]): List[A]

// Selects the last element. O(n)

def last: A

// Applies the function f to each element in the list.

def map[B](f: A => B): List[B]

// Returns a new list with elements in reversed order. O(n)

def reverse: List[A]

// The size of this collection. O(n)

def size: Int

// Sorts this sequence according to an Ordering. O(n * log(n))

def sorted[B >: A](implicit ord: Ordering[B]): List[A]

// Selects all elements except the first. O(1)

def tail: List[A]

// Takes longest prefix of elements that satisfy a predicate.

def takeWhile(p: A => Boolean): List[A]

object List:

// Produces a collection containing the results of some element computation a

// number of times.

def fill[A](n: Int)(elem: => A): List[A] = ???



Solutions

abstract class ParList[+A] extends List[A]:

// Aggregates the results of applying an operator to subsequent elements.

def aggregate[B](z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B

abstract class Option[+A]:

// Returns this option’s value.

def get: A

// Returns true if this option is an instance of Some, false otherwise.

def isDefined: Boolean

// Returns true if this option is None, false otherwise.

def isEmpty: Boolean

object math:

// Returns the value rounded down to an integer.

def floor(x: Double): Double = ???

// Returns the value of the first argument raised to the power of the second

argument.

def pow(x: Double, y: Double): Double = ???

// Returns the square root of a Double value.

def sqrt(x: Double): Double = ???

abstract class Double:

// Converts this value to an integer

def toInt: Int



Solutions


